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Abstract

In the present note a general reconstruction algorithm for simulating incompressible flows with complex immersed

boundaries on Cartesian grids is presented. In the proposed method an arbitrary three-dimensional solid surface im-

mersed in the fluid is discretized using an unstructured, triangular mesh, and all the Cartesian grid nodes near the

interface are identified. Then, the solution at these nodes is reconstructed via linear interpolation along the local normal

to the body, in a way that the desired boundary conditions for both pressure and velocity fields are enforced. The

overall accuracy of the resulting solver is second-order, as it is demonstrated in two test cases involving laminar flow

past a sphere.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical methods for solving the Navier–Stokes equations on non-boundary-conforming grids are

becoming increasingly popular due to their versatility in simulations of flows with complex immersed

boundaries [1–6]. Depending on the way boundary conditions are enforced on solid surfaces, commonly

adopted methodologies are the immersed boundary methods [1], Cartesian or cut-cell methods [2,3] and

hybrid Cartesian/immersed boundary formulations [4–6]. The latter class of methods is particularly at-

tractive because boundary conditions can be accurately applied on a sharp solid interface – thus, alleviating

an important limitation of the immersed boundary approach – without requiring tedious cell-merging
procedures typically employed in cut-cell formulations [2,3]. In particular, the application of boundary

conditions in hybrid formulations involves the reconstruction of the solution at the nodes nearest to the

immersed interface, via appropriate interpolation procedures [4–6] using the known boundary values on the

solid surface and information from the interior of the flow. This solution reconstruction scheme is a critical
*Corresponding author. Tel.: +1-404-894-4432; fax: +1-404-385-1131.

E-mail address: fs30@ce.gatech.edu (F. Sotiropoulos).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00321-8

mail to: fs30@ce.gatech.edu


A. Gilmanov et al. / Journal of Computational Physics 191 (2003) 660–669 661
issue for the successful implementation of hybrid approaches in three-dimensional flows as it determines

both the global spatial accuracy of such methods and their adaptability to flow computations with arbi-

trarily complex immersed boundaries.

Fadlun et al. [4] proposed a simple reconstruction algorithm based on one-dimensional interpolations

along the grid line that passes from a given near-boundary node and intersects the solid body. The method

is straightforward, second-order accurate, and works well for bodies that are largely aligned with the grid

lines. For geometrically complex immersed boundaries, however, the choice of the reconstruction direction

may not be unique as often more than one grid line passing through a near-boundary node may intersect
the boundary. A multi-dimensional scheme aimed at removing this arbitrary element in the implementation

of hybrid formulations was proposed in [5]. This scheme uses a bilinear reconstruction procedure that is

reduced to the one-dimensional linear one when there are no available points in the vicinity of the boundary

to support the two-dimensional stencil. More recently, Balaras [6] introduced a reconstruction scheme,

which performs the reconstruction along the well defined line normal to the body. The accuracy of this

method was demonstrated by applying it to simulate laminar flow past a circular cylinder and to carry out a

large-eddy simulation of flow through an infinitely wide channel with a wavy wall [6]. The algorithm

proposed in [6] eliminates the previously discussed ambiguities associated with interpolation along grid
lines but its applicability is restricted to flows with immersed boundaries that are aligned with one coor-

dinate direction (e.g., two-dimensional or axisymmetric shapes). In such cases, the solution reconstruction

is greatly simplified as it needs to be performed in two-dimensional planes.

In this note we develop a new reconstruction algorithm, which is based on the ideas of [6] but is ap-

plicable to arbitrarily complex, three-dimensional immersed boundaries. The proposed methodology

maintains a sharp fluid/body interface by discretizing the body surface using an unstructured, triangular

mesh (see [7] for the origin of this idea in multi-phase flow simulations) and reconstructing the solution at

near-boundary nodes via linear interpolation along the local normal to the body. In what follows, we
describe briefly the base flow solver, present the new reconstruction scheme and demonstrate its second-

order accuracy by applying it to simulate two test cases involving laminar flow past a sphere.
2. Base numerical method

We solve the three-dimensional, incompressible Navier–Stokes equations in strong conservation form on

non-staggered grids using a second-order accurate, finite-difference approach. The governing equations are
discretized using three-point central differencing for the pressure gradient and viscous terms in the mo-

mentum equations and the velocity derivate terms in the continuity equations along with the second-order

accurate QUICK upwind scheme for the convective terms. Odd–even decoupling of the pressure nodes is

eliminated using the method proposed in [8]. The discrete equations are integrated in a time-accurate

manner using the second-order accurate, dual time-stepping, artificial compressibility approach described

in [9]. This method employs a four-stage, explicit Runge–Kutta scheme enhanced with implicit residual

smoothing and local (dual) time stepping [9].
3. Treatment of complex immersed boundaries

We discretize immersed boundaries using an unstructured triangular mesh (see Figs. 1 and 2(a)). This

choice is dictated by: (1) the need to develop a method for handling arbitrarily complex immersed

boundaries; (2) the fact that the reconstruction algorithm we propose relies on interpolation along the

normal direction, which can be readily computed for a surface discretized with triangular elements. Given

the triangular discretization of the immersed boundary, the computational nodes of the Cartesian mesh can



Fig. 1. Schematic depicting the reconstruction of the solution at an immersed boundary node b by interpolating along the local normal

to the surface of the body. The dashed line plane is the intersection of the body surface with the Cartesian grid. The triangle is a typical

element of the unstructured mesh used to discretize the surface of the immersed boundary.

Fig. 2. Steady flow in a cubic, lid-driven cavity of height H containing a sphere of diameter H=2 at its center. To avoid corner sin-

gularities the lid velocity is prescribed as follows: ULidðxÞ ¼ 0:5½1þ sinð4px=H � p=2Þ� for x=H ¼ 0:25 and x=H P 0:75; ULidðxÞ ¼ 1:0

for 0:25 < x=H < 0:75. Calculations were carried out on four grids: 253, 333, 493, and 653. (a) Unstructured grid on the surface of the

sphere and calculated steady-state streamlines at the vertical plane of symmetry (y ¼ H=2); (b) convergence of the L1 and L2 norms for

the error in the velocity magnitude relative to a benchmark numerical solution obtained on a 1293 grid. The average slopes for the L1
and L2 norms are 1.48 and 1.74, respectively.
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be classified in three categories based on their location relative to the body: (1) nodes in the fluid phase

(fluid nodes); (2) nodes in the solid body (solid nodes); and (3) near-boundary nodes. The latter are grid

nodes in the fluid that are closest to the solid surface and in our algorithm are treated as boundary points.
We shall refer to these nodes as the immersed boundary (IB) nodes. For a convex body (i.e., a body that

contains all the line segments connecting any pair of its points) the following algorithm can be used to

classify the Cartesian grid nodes in the three categories mentioned above. The Cartesian grid node (i; j; k)
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will be internal to the body (solid node) if the following condition is satisfied (no summation over repeated

indices):

nm � ðri;j;k � rmÞ < 0 8m ¼ 1;M ; ð1Þ

where M is the number of triangular elements used to discretize the body, ri;j;k is the position vector of the

(i; j; k) Cartesian grid node, rm is the position vector of the centroid of the mth triangular element (m ¼ 1–

M) on the interface, and nm is the normal unit vector at the centroid of the mth triangular element. Nodes

that do not satisfy Eq. (1) for all m are in the fluid phase and will be either fluid or IB nodes. To determine

the IB nodes, we examine the six grid nodes (i� 1; j; k), (i; j� 1; k), (i; j; k � 1) surrounding each solid node

(i; j; k). Each such node that is not a solid node is classified as an IB node. At the end of this procedure all

the remaining nodes in the fluid phase are the fluid nodes. For example, with reference to Fig. 1 nodes 2, 3,
and 6 are tagged as solid, nodes a, b, c and d as fluid, and nodes 1, 4, 5, 7, and 8, as IB. It is important to

emphasize that the criterion given by Eq. (1) is strictly valid only for a Cartesian domain containing a

single, convex, immersed boundary. For domains containing multiple immersed boundaries and/or

boundaries of more general shape, further constraints need to be imposed on Eq. (1), which, however, is left

as a topic for future research. Future extension of the method should also address situations involving

bodies with regions of very high curvature where the projection from an IB node to the body may not be

always uniquely defined or even may not exist.

The governing equations are solved at all fluid nodes with boundary conditions specified at the IB nodes.
All solid nodes are blanked out of the computation. Assuming that the solution at all fluid nodes at the

‘-iteration of the iterative solution procedure for solving the governing equations is known, advancing the

velocity and pressure fields to the ‘þ 1 iteration requires specification of boundary conditions at all IB

nodes. Since the immersed boundary is tracked as a sharp interface, boundary conditions are known at the

M nodes of the unstructured surface mesh. These conditions typically consist of Dirichlet conditions for the

velocity field (no-slip conditions, i.e., u ¼ v ¼ w ¼ 0 on the surface for a fixed rigid body) and a Neumann

condition for the pressure field (derived from the normal momentum equation to the body), which can also

be viewed as a Dirichlet condition for op=on.
Let fm denote any one of these four quantities on the interface – in other words, f stands for u, v, w, or

op=on and is known at all times for all m ¼ 1;M . With reference to Fig. 1, the boundary conditions for f ‘þ1
b

at the IB node b are determined as follows. According to the notation of this figure, IB node b is associated

with the triangular element with normal n on the interface mesh. Since n is known, the line that passes

through node b and is parallel to n can be readily constructed. This line intersects the surface element at

point a (the projection of node b on the immersed boundary) and the Cartesian grid element defined by

nodes a–b–c–d at point c. With f assumed to be known at all vertices of the surface element, fa can be

computed by linear interpolation among the vertices of the triangular surface element as follows:

fa ¼
X
m¼1;3

fm=sm

 ! X
m¼1;3

1=sm

 !,
; ð2Þ

where m ¼ 1; 3 are the three vertices of the triangular element within which point a lies, and sm is the

distance between a and m-vertex. For a fixed, rigid body this step is not required for the velocity com-

ponents since all three of them are set equal to zero everywhere on the surface (fa ¼ 0) to satisfy the no-slip
condition. A similar interpolation procedure is employed to obtain f ‘þ1

c , by applying Eq. (2) to interpolate

among the internal Cartesian grid nodes a–b–c–d where the solution is already known at the previous it-

eration. This interpolation procedure is straightforward for the three Cartesian velocity components. To

calculate the normal pressure gradient ðop=onÞ‘þ1

c , we first compute the pressure derivatives ðop=oxiÞ‘c in all

three Cartesian coordinate directions (i ¼ 1; 2; 3) at c by interpolating between their known values at nodes

a–b–c–d. The normal pressure gradient at c is then calculated as follows:



664 A. Gilmanov et al. / Journal of Computational Physics 191 (2003) 660–669
op
on

� �‘þ1

c

¼ na � ðrpÞ‘c: ð3Þ

With all quantities known at points a and c, boundary conditions for the velocity components and the

pressure at IB node b are determined as follows. The velocity components ðu; v;wÞ‘þ1

b are calculated using

linear interpolation along a–c between the known values at points a and c. Linear interpolation between the

known values at points a and c is also used to determine the normal pressure gradient ðop=onÞbc at the mid-

point of the segment b–c and the value of the pressure at IB node b is determined via the following central,

second-order accurate approximation:

p‘þ1
b ¼ p‘c � Dsbc

op
on

� �‘þ1

bc

; ð4Þ

where Dsbc is the distance between points b and c.
In the above approach the IB nodes are treated as boundary nodes in computations with body-fitted

meshes and, thus, discrete operators with stencil greater than three in the governing equations need to be

modified. For example, at a node immediately adjacent to an IB node (such as node b in Fig. 1) the QUICK

scheme cannot be applied if the sign of the local convective velocity is such that a blanked, external node is

required in the unmodified stencil. In such cases, the QUICK scheme is replaced with the first order upwind

scheme. Such an approximation does not affect the second order accuracy of the method (see Figs. 2 and 6)

since the truncation error of the first-order upwind scheme involves second-order spatial derivatives, which
vanish for a linearly varying velocity field. Moreover, the linear variation of the velocity field near the

boundary also allows us to use homogeneous Neumann boundary condition for the pressure as for this case

and assuming that the boundary is stationary the normal momentum equation reduces to op=on ¼ 0. The

algorithm presented above, however, is generally applicable to flows where a non-zero pressure gradient is

imposed on the surface – say due to motion of the immersed boundary.
4. Results

We test the spatial accuracy of our algorithm by applying it to calculate steady flow in a cubic lid-driven

cavity containing a stationary, rigid sphere at its center. This problem is the three-dimensional equivalent of

the 2D problem used in the recent study by Kirpatrick et al. [3] to test the accuracy of their cut-cell for-

mulation. The cavity height is H , the diameter of the sphere is H=2, and the lid velocity is made to vary

smoothly in space to avoid the corner singularities (see caption of Fig. 2). We carry out simulations for
Re ¼ 20 (based on the sphere diameter and the lid maximum velocity) on five, uniform, Cartesian grids: 253,

333, 493, 653, and 1293. For all grids, the sphere surface is discretized with 7770 triangular elements. The

solution obtained on the finest grid 1293 is considered as the benchmark (‘‘exact’’) solution and the errors of

the solutions obtained on the four coarser grids are quantified in terms of the L1 and L2 norms. The error

norms are calculated at all grid nodes exterior to the sphere, including the IB nodes where the recon-

struction algorithm is employed. As seen in Fig. 2, the convergence of both norms indicates near second-

order accuracy. The reasons for the small deviations from second-order convergence are not entirely clear

but could possibly be attributed to the relative coarseness of the benchmark grid. Note that the benchmark
grid used in the 2D convergence study in [3], who reported convergence somewhat closer to second-order

than that shown in Fig. 2, was almost three times finer along each direction (they used a 3842 grid). Such

fine grid resolution is prohibitively expensive in our 3D study. The local convergence results shown in Fig. 2,

however, along with the subsequently presented global convergence study for the sphere problem (Fig. 6)

establish the second-order accuracy of our reconstruction approach.
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To demonstrate the accuracy of our algorithm for a flow with more complex physics we apply it to

simulate laminar flow past a sphere for 506Re6 300. The Reynolds number is based on the sphere di-

ameter D and the freestream velocity U – in our subsequent discussion we have used D and U to scale

lengths and velocities, respectively. This flow has been previously computed by Johnson and Patel [10] (see

also [11]), who used a body fitted grid, Fadlun et al. [4] and Kim et al. [5], who both employed variants of

hybrid Cartesian/immersed boundary techniques. It is important to note that in [4,5] cylindrical, polar

coordinates were used to discretize the flow domain and, thus, the solution reconstruction scheme in these

studies was implemented only in two-dimensional azimuthal planes. In this work we treat the sphere as a
three-dimensional surface immersed in the fluid and solve the governing equations in Cartesian coordinates

in order to further test the accuracy of our three-dimensional reconstruction scheme.

The sphere is centered at the origin of the Cartesian coordinate system in a rectangular box extending

between: �106 x6 10, �56 y6 5, and �56 z6 5. Free stream boundary conditions (u ¼ 1; v ¼ w ¼ 0) are
Fig. 3. Calculated steady-state streamlines on a diametral plane for flow past a sphere at: (a) Re ¼ 50; (b) Re ¼ 100; and (c) Re ¼ 200.

All three solutions were obtained on the 1003 Cartesian mesh with near-sphere minimum grid spacing h ¼ 0:025.
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applied at the inflow boundary (x ¼ �10). At all other boundaries of the computational domain, boundary

conditions are specified by implementing in the dual time-stepping artificial compressibility algorithm, the

non-reflective characteristic approach proposed in [12]. Two grid densities were considered for the

Cartesian domain: a coarse grid with 503 grid nodes and a finer grid with 1003. Hyperbolic tangent

stretching was used to increase the spatial resolution near the surface of the sphere. More specifically, along

each coordinate direction the grid nodes were clustered in the vicinity of the corresponding Cartesian planes

that are tangent to the surface of the sphere, i.e., the planes x; y, and z ¼ 0:5 for the grid nodes along the x,
y, and z directions, respectively. The near-sphere minimum grid spacing h is constant along all three co-
ordinate directions and is varied from 0.2 to 0.025. The surface of the sphere is discretized using 7770

triangular elements (3887 vertices). Numerical sensitivity tests showed that discretization of the sphere with

finer resolution did not have any appreciable effect on the accuracy of the computed results even on the

finest Cartesian grid employed in this study.

Fig. 3 shows steady-state streamlines at the x–y plane of symmetry for Re ¼ 50, 100, and 200 obtained

on the (1003, h ¼ 0:025) mesh. In accordance with previous experimental and computational results [11],

the calculated flowfields are steady and axisymmetric with the size of the recirculating region at the

downstream end of the sphere increasing continuously with Re. In Fig. 4 we compare the variation of the
separation length Xs (see Fig. 3(b) for definition) with Reynolds number. For the Re ¼ 100 case we also

show results obtained on four grids to illustrate the importance of fine, near-body grid resolution in the

accuracy of the computed results (see also Table 1). On the finest mesh resolution our computed results are
Fig. 4. Comparison of the calculated (1003 grid with h ¼ 0:025) variation of separation length Xs (see Fig. 3) with Reynolds number

with the benchmark computations of [11]. For the Re ¼ 100 case results obtained on four grid resolutions are also shown.

Table 1

Flow past a sphere at Re ¼ 100

h Xs Cd cXs
cCd

0.2 2.194 5.261

0.1 1.226 2.196 1.93 1.94

0.05 0.944 1.311 2.48 2.45

0.025 0.894 1.153 2.37 2.28

Separation length, drag coefficient and corresponding convergence rates at successively finer grids. The convergence rate c is

calculated as follows: c ¼ logðerrðkÞ=errðk�1ÞÞ= logðhðkÞ=hðk�1ÞÞ, where k is the current grid level and k � 1 is the immediately coarser grid.

The error, err, at every grid level is calculated relative to the benchmark results of [11]: Xs ¼ 0:882 and Cd ¼ 1:112.
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in excellent agreement with the benchmark results [11]. Fig. 5 compares the variation of the calculated

pressure coefficient along the h and / directions with the results of [11]. The profiles in both directions

should be indistinguishable for axisymmetric flow and are shown in order to establish the degree of axi-

symmetry of our solutions. As seen, the calculated pressure field exhibits a high degree of axisymmetry and

is in very good agreement with the benchmark data. In Fig. 6 we provide further evidence of the second-

order spatial accuracy of our method by plotting the log–log variation of the error for the drag coefficient
Fig. 5. Comparison of the calculated (1003 grid with h ¼ 0:025) variation of pressure coefficient Cps ¼ 2ðps � p1Þ=ðqU 2Þ on the surface

of the sphere with the benchmark computations of [11] for Re ¼ 100. h is the azimuthal angle in the x–z plane and / is the polar angle

in the x–y plane, both measured from the negative x-axis. The computed Cps on a coarse mesh is also included for comparison.

Fig. 6. Variation of the error in the predicted drag coefficient Cd (line with inverted triangles) and separation length Xs (line with

triangles) with the near-sphere minimum grid spacing h for Re ¼ 100. The benchmark computations of [11] are considered to be the

exact solution. Lines of slope 1 and 2 have also been included for reference (see Table 1 for numerical values).
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Cd and the separation length Xs as a function of the minimum, near-sphere, grid spacing h for Re ¼ 100. For

both quantities the results of [11] are assumed to be the ‘‘exact’’ solution (see Table 1 for a detailed pre-

sentation of these results).

Fig. 7(a) shows the calculated steady streamlines at two mutually perpendicular diametral planes for

Re ¼ 250. The solution shown in this figure was obtained by integrating the equations in a time-accurate

manner and, in agreement with experimental observations and previous calculations, is steady and

asymmetric. At even higher Re, unsteady flow sets in with a train of hairpin vortices shed asymmetrically

in the wake of the sphere. As shown in Fig. 7(b), which visualizes coherent structures in the wake of the
sphere using the k2-method [13], our simulations capture this feature of the flow correctly. Moreover, the
Fig. 7. (a) Calculated steady-state streamlines at two mutually perpendicular diametral planes illustrating the asymmetry of the flow

for Re ¼ 250. (b) Instantaneous structure of hairpin vortices in the wake of the sphere for Re ¼ 300 visualized using the k2-method [13].

Both solutions were obtained on the 1003 Cartesian mesh with near-sphere minimum grid spacing h ¼ 0:025.
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calculated Strouhal number for this case is 0.135 and this is in close agreement with the 0.137 value reported

in [11].
5. Conclusions

In this note we proposed a reconstruction algorithm that is straightforward to implement, eliminates

algorithmic ambiguities inherent in methods based on interpolation along grid lines and facilitates the
implementation of Neumann boundary conditions for the pressure on the immersed boundary. The above

results demonstrated that the method is second-order accurate and is readily applicable to flows with ar-

bitrarily complex immersed boundaries. Our approach, therefore, should be promising for simulating

complex flow/structure interaction problems on Cartesian grids.
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